Graph-based Segmentation of Range Data with Applications to 3D Urban Mapping
نویسندگان
چکیده
This paper presents an efficient graph-based algorithm for the segmentation of planar regions out of 3D range maps of urban areas. Segmentation of planar surfaces in urban scenarios is challenging because the data acquired is typically sparsely sampled, incomplete, and noisy. The algorithm is motivated by Felzenszwalb’s algorithm to 2D image segmentation [8], and is extended to deal with non-uniformly sampled 3D range data using an approximate nearest neighbor search. Interpoint distances are sorted in increasing order and this list of distances is traversed growing planar regions that satisfy both local and global variation of distance and curvature. The algorithm runs in O(n log n) and compares favorably with other region growing mechanisms based on Expectation Maximization. Experiments carried out with real data acquired in an outdoor urban environment demonstrate that our approach is well-suited to segment planar surfaces from noisy 3D range data. A pair of applications of the segmented results are shown, a) to derive traversability maps, and b) to calibrate a camera network.
منابع مشابه
Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملمدلسازی صفحهای محیطهای داخلی با استفاده از تصاویر RGB-D
In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...
متن کاملSegmentation of Magnetic Resonance Brain Imaging Based on Graph Theory
Introduction: Segmentation of brain images especially from magnetic resonance imaging (MRI) is an essential requirement in medical imaging since the tissues, edges, and boundaries between them are ambiguous and difficult to detect, due to the proximity of the brightness levels of the images. Material and Methods: In this paper, the graph-base...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملMulti-Class Simultaneous Adaptive Segmentation and Quality Control of Point Cloud Data
3D modeling of a given site is an important activity for a wide range of applications including urban planning, as-built mapping of industrial sites, heritage documentation, military simulation, and outdoor/indoor analysis of airflow. Point clouds, which could be either derived from passive or active imaging systems, are an important source for 3D modeling. Such point clouds need to undergo a s...
متن کامل